Chapter 3: Molecules of Life

Organic Compounds

Hydrogen and other elements covalently bonded to carbon

- Carbohydrates
- Lipids
- Proteins
- Nucleic Acids

Carbon's Bonding Behavior

Chemistry of Carbon

 Outer shell of carbon has 4 electrons; can hold 8

 Each carbon atom can form covalent bonds with up to four atoms

Organic Compounds

ball-and-stick model

space-filling model

Bonding Arrangements

 Carbon atoms can form chains or rings

 Other atoms project from the carbon backbone

Organic Compounds

Examples of Functional Groups

Hydroxyl group

- OH

Amino group

- NH₃+

Carboxyl group

- COOH

Phosphate group

- PO₃-

Sulfhydryl group

- SH

Functional Groups

 Atoms or clusters of atoms that are covalently bonded to carbon backbone

Give organic compounds their different properties

Fig. 3-4, p.36

Condensation

Hydrolysis

© 2001 Brooks/Cole Publishing/ITP

Carbohydrates

Monosaccharides

(simple sugars)

Oligosaccharides

(short-chain carbohydrates)

Polysaccharides

(complex carbohydrates)

Monosaccharides

- Simplest carbohydrates
- Most are sweet tasting, water soluble
- Most have 5- or 6-carbon backbone
 - Glucose (6 C)
 - Fructose (6 C)
 - Ribose (5 C)
 - Deoxyribose (5 C)

glucose

fructose

Disaccharides

- Type of oligosaccharide
- Two monosaccharides covalently bonded
- Formed by condensation reaction

sucrose

Polysaccharides

- Straight or branched chains of many sugar monomers
- Most common are composed entirely of glucose
 - Cellulose
 - Starch (such as amylose)
 - Glycogen

Cellulose & Starch

- Differ in bonding patterns between monomers
- Cellulose tough, indigestible, structural material in plants
- Starch easily digested, storage form in plants

Glycogen

Sugar storage form in animals

Large stores in muscle and liver cells

 When blood sugar decreases, liver cells degrade glycogen, release glucose

Lipids

- Most include fatty acids
 - Fats
 - Phospholipids
 - Waxes
- Sterols (steriods) and their derivatives have no fatty acids
- Tend to be insoluble in water

Fats

Fatty acid(s)
 attached to glycerol

 Triglycerides are the most common fat

Fig. 3-12, p.40

Three Fatty Acids

@ 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

Fig. 3-12a, p.40

Phospholipids

Main components of cell membranes

cell membrane section

Sterols and Derivatives

- No fatty acids
- Rigid backbone of four fused-together carbon rings
- Cholesterol, estrogen, testosterone - most common type in animals

© 2001 Brooks/Cole - Thomson Learning

Amino Acid Structure

Properties of Amino Acids

- Determined by the "R group"
- Amino acids may be:
 - Non-polar
 - Uncharged, polar
 - Positively charged, polar
 - Negatively charged, polar

Protein Synthesis

- Protein is a chain of amino acids linked by peptide bonds
- Peptide bond
 - Type of covalent bond
 - Links amino group of one amino acid with carboxyl group of next
 - Forms through condensation reaction

Fig. 3-15c, p.42

© 2006 Thomson Higher Education

Fig. 3-15e, p.42

Primary Structure

- Sequence of amino acids
- Unique for each protein
- Two linked amino acids = dipeptide
- Three or more = polypeptide
- Backbone of polypeptide has N atoms:

-N-C-C-N-C-C-N-

Primary Structure

- Primary structure influences shape in two main ways:
 - Allows hydrogen bonds to form between different amino acids along length of chain
 - Puts R groups in positions that allow them to interact

Secondary Structure

- Hydrogen bonds form between different parts of polypeptide chain
- These bonds give rise to coiled or extended pattern
- Helix or pleated sheet

Tertiary Structure

Folding as a result of interactions between R groups

heme group

coiled and twisted polypeptide chain of one globin molecule

Quaternary Structure

Some proteins
 are made up of
 more than one
 polypeptide chain

© 2006 Brooks/Cole - Thomson

Nucleotide Structure

- Sugar
 - Ribose or deoxyribose
- At least one phosphate group
- Base
 - Nitrogen-containing
 - Single or double ring structure

Nucleotide Functions

- Energy carriers
- Coenzymes
- Chemical messengers
- Building blocks for nucleic acids

DNA

- Double-stranded
- Consists of four types of nucleotides
- A bound to T
- C bound to G

RNA

- Usually single strands
- Four types of nucleotides
- Unlike DNA, contains the base uracil in place of thymine
- Three types are key players in protein synthesis